extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1S32 = D36⋊S3 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | 4 | C12.1S3^2 | 432,68 |
C12.2S32 = C9⋊D24 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 4+ | C12.2S3^2 | 432,69 |
C12.3S32 = D12.D9 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | 4 | C12.3S3^2 | 432,70 |
C12.4S32 = C36.D6 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | 4- | C12.4S3^2 | 432,71 |
C12.5S32 = Dic6⋊D9 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | 4 | C12.5S3^2 | 432,72 |
C12.6S32 = C18.D12 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 4+ | C12.6S3^2 | 432,73 |
C12.7S32 = C12.D18 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | 4 | C12.7S3^2 | 432,74 |
C12.8S32 = C9⋊Dic12 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | 4- | C12.8S3^2 | 432,75 |
C12.9S32 = He3⋊3D8 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 12+ | C12.9S3^2 | 432,83 |
C12.10S32 = He3⋊4SD16 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 12- | C12.10S3^2 | 432,84 |
C12.11S32 = He3⋊5SD16 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 12+ | C12.11S3^2 | 432,85 |
C12.12S32 = He3⋊3Q16 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | 12- | C12.12S3^2 | 432,86 |
C12.13S32 = D9×Dic6 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | 4- | C12.13S3^2 | 432,280 |
C12.14S32 = D18.D6 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 4 | C12.14S3^2 | 432,281 |
C12.15S32 = Dic6⋊5D9 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 4+ | C12.15S3^2 | 432,282 |
C12.16S32 = Dic18⋊S3 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 4 | C12.16S3^2 | 432,283 |
C12.17S32 = D12⋊5D9 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | 4- | C12.17S3^2 | 432,285 |
C12.18S32 = D12⋊D9 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 4 | C12.18S3^2 | 432,286 |
C12.19S32 = D9×D12 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 4+ | C12.19S3^2 | 432,292 |
C12.20S32 = C36⋊D6 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 4 | C12.20S3^2 | 432,293 |
C12.21S32 = C3⋊S3⋊Dic6 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 12- | C12.21S3^2 | 432,294 |
C12.22S32 = C12⋊S3⋊S3 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 12+ | C12.22S3^2 | 432,295 |
C12.23S32 = C12.S32 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | 12- | C12.23S3^2 | 432,299 |
C12.24S32 = C3⋊S3⋊D12 | φ: S32/C32 → C22 ⊆ Aut C12 | 36 | 12+ | C12.24S3^2 | 432,301 |
C12.25S32 = C33⋊6D8 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | | C12.25S3^2 | 432,436 |
C12.26S32 = C33⋊7D8 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | | C12.26S3^2 | 432,437 |
C12.27S32 = C33⋊12SD16 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | | C12.27S3^2 | 432,439 |
C12.28S32 = C33⋊13SD16 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | | C12.28S3^2 | 432,440 |
C12.29S32 = C33⋊14SD16 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | | C12.29S3^2 | 432,441 |
C12.30S32 = C33⋊15SD16 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | | C12.30S3^2 | 432,442 |
C12.31S32 = C33⋊6Q16 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | | C12.31S3^2 | 432,445 |
C12.32S32 = C33⋊7Q16 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | | C12.32S3^2 | 432,446 |
C12.33S32 = C33⋊9D8 | φ: S32/C32 → C22 ⊆ Aut C12 | 48 | 4 | C12.33S3^2 | 432,457 |
C12.34S32 = C33⋊18SD16 | φ: S32/C32 → C22 ⊆ Aut C12 | 48 | 4 | C12.34S3^2 | 432,458 |
C12.35S32 = C33⋊9Q16 | φ: S32/C32 → C22 ⊆ Aut C12 | 48 | 4 | C12.35S3^2 | 432,459 |
C12.36S32 = (C3×D12)⋊S3 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | | C12.36S3^2 | 432,661 |
C12.37S32 = D12⋊(C3⋊S3) | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | | C12.37S3^2 | 432,662 |
C12.38S32 = C3⋊S3×Dic6 | φ: S32/C32 → C22 ⊆ Aut C12 | 144 | | C12.38S3^2 | 432,663 |
C12.39S32 = C12.39S32 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | | C12.39S3^2 | 432,664 |
C12.40S32 = C12.40S32 | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | | C12.40S3^2 | 432,665 |
C12.41S32 = C32⋊9(S3×Q8) | φ: S32/C32 → C22 ⊆ Aut C12 | 72 | | C12.41S3^2 | 432,666 |
C12.42S32 = C3⋊S3⋊4Dic6 | φ: S32/C32 → C22 ⊆ Aut C12 | 48 | 4 | C12.42S3^2 | 432,687 |
C12.43S32 = C12⋊S3⋊12S3 | φ: S32/C32 → C22 ⊆ Aut C12 | 48 | 4 | C12.43S3^2 | 432,688 |
C12.44S32 = D36.S3 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | 4- | C12.44S3^2 | 432,62 |
C12.45S32 = C6.D36 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | 4+ | C12.45S3^2 | 432,63 |
C12.46S32 = C3⋊D72 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | 4+ | C12.46S3^2 | 432,64 |
C12.47S32 = C3⋊Dic36 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | 4- | C12.47S3^2 | 432,65 |
C12.48S32 = S3×Dic18 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | 4- | C12.48S3^2 | 432,284 |
C12.49S32 = D36⋊5S3 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | 4- | C12.49S3^2 | 432,288 |
C12.50S32 = Dic9.D6 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | 4+ | C12.50S3^2 | 432,289 |
C12.51S32 = S3×D36 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | 4+ | C12.51S3^2 | 432,291 |
C12.52S32 = C33⋊8D8 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | | C12.52S3^2 | 432,438 |
C12.53S32 = C33⋊16SD16 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | | C12.53S3^2 | 432,443 |
C12.54S32 = C33⋊17SD16 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | | C12.54S3^2 | 432,444 |
C12.55S32 = C33⋊8Q16 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | | C12.55S3^2 | 432,447 |
C12.56S32 = S3×C32⋊4Q8 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | | C12.56S3^2 | 432,660 |
C12.57S32 = C12.57S32 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | | C12.57S3^2 | 432,668 |
C12.58S32 = C12.58S32 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | | C12.58S3^2 | 432,669 |
C12.59S32 = D9×C3⋊C8 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | 4 | C12.59S3^2 | 432,58 |
C12.60S32 = C36.38D6 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | 4 | C12.60S3^2 | 432,59 |
C12.61S32 = C36.39D6 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | 4 | C12.61S3^2 | 432,60 |
C12.62S32 = C36.40D6 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | 4 | C12.62S3^2 | 432,61 |
C12.63S32 = S3×C9⋊C8 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | 4 | C12.63S3^2 | 432,66 |
C12.64S32 = D6.Dic9 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | 4 | C12.64S3^2 | 432,67 |
C12.65S32 = D6.D18 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | 4 | C12.65S3^2 | 432,287 |
C12.66S32 = C4×S3×D9 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | 4 | C12.66S3^2 | 432,290 |
C12.67S32 = S3×C32⋊4C8 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | | C12.67S3^2 | 432,430 |
C12.68S32 = C3⋊S3×C3⋊C8 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | | C12.68S3^2 | 432,431 |
C12.69S32 = C12.69S32 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | | C12.69S3^2 | 432,432 |
C12.70S32 = C33⋊7M4(2) | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | | C12.70S3^2 | 432,433 |
C12.71S32 = C33⋊8M4(2) | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 144 | | C12.71S3^2 | 432,434 |
C12.72S32 = C33⋊9M4(2) | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | | C12.72S3^2 | 432,435 |
C12.73S32 = C12.73S32 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 72 | | C12.73S3^2 | 432,667 |
C12.74S32 = C3×C3⋊D24 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.74S3^2 | 432,419 |
C12.75S32 = C3×D12.S3 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.75S3^2 | 432,421 |
C12.76S32 = C3×C32⋊5SD16 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.76S3^2 | 432,422 |
C12.77S32 = C3×C32⋊3Q16 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.77S3^2 | 432,424 |
C12.78S32 = C3×S3×Dic6 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.78S3^2 | 432,642 |
C12.79S32 = C3×D12⋊5S3 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.79S3^2 | 432,643 |
C12.80S32 = C3×D6.6D6 | φ: S32/C3×S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.80S3^2 | 432,647 |
C12.81S32 = He3⋊3SD16 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.81S3^2 | 432,78 |
C12.82S32 = He3⋊2D8 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6+ | C12.82S3^2 | 432,79 |
C12.83S32 = He3⋊2Q16 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 144 | 6- | C12.83S3^2 | 432,80 |
C12.84S32 = C12.84S32 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.84S3^2 | 432,296 |
C12.85S32 = C12.85S32 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6- | C12.85S3^2 | 432,298 |
C12.86S32 = C12.86S32 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 36 | 6+ | C12.86S3^2 | 432,302 |
C12.87S32 = C32⋊C6⋊C8 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.87S3^2 | 432,76 |
C12.88S32 = He3⋊M4(2) | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.88S3^2 | 432,77 |
C12.89S32 = C12.89S32 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.89S3^2 | 432,81 |
C12.90S32 = He3⋊3M4(2) | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.90S3^2 | 432,82 |
C12.91S32 = C12.91S32 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 72 | 6 | C12.91S3^2 | 432,297 |
C12.92S32 = C4×C32⋊D6 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 36 | 6 | C12.92S3^2 | 432,300 |
C12.93S32 = C12.93S32 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.93S3^2 | 432,455 |
C12.94S32 = C33⋊10M4(2) | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.94S3^2 | 432,456 |
C12.95S32 = C12.95S32 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.95S3^2 | 432,689 |
C12.96S32 = C3×C32⋊2D8 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.96S3^2 | 432,418 |
C12.97S32 = C3×Dic6⋊S3 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.97S3^2 | 432,420 |
C12.98S32 = C3×C32⋊2Q16 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.98S3^2 | 432,423 |
C12.99S32 = C3×D12⋊S3 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.99S3^2 | 432,644 |
C12.100S32 = C3×Dic3.D6 | φ: S32/C3⋊S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.100S3^2 | 432,645 |
C12.101S32 = C3×S3×C3⋊C8 | central extension (φ=1) | 48 | 4 | C12.101S3^2 | 432,414 |
C12.102S32 = C3×C12.29D6 | central extension (φ=1) | 48 | 4 | C12.102S3^2 | 432,415 |
C12.103S32 = C3×D6.Dic3 | central extension (φ=1) | 48 | 4 | C12.103S3^2 | 432,416 |
C12.104S32 = C3×C12.31D6 | central extension (φ=1) | 48 | 4 | C12.104S3^2 | 432,417 |
C12.105S32 = C3×D6.D6 | central extension (φ=1) | 48 | 4 | C12.105S3^2 | 432,646 |